Effect of Carboxyl Graphene on Direct Electrochemistry of Myoglobin and Electrocatalytic Investigation

Wen Zheng, Wenshu Zhao, Wei Chen, Wenju Weng, Zhengwei Liao, Ruixia Dong, Guangjiu Li, Wei Sun

1 Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P R China
2 College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
*E-mail: swyy26@hotmail.com

doi: 10.20964/2017.05.02

Received: 1 February 2017 / Accepted: 3 March 2017 / Published: 12 April 2017

In this paper the effect of carboxyl graphene (G-COOH) on the electrochemical behavior of myoglobin (Mb) was investigated in detail. A Nafion, Mb and G-COOH modified carbon ionic liquid electrode (CILE) was constructed and applied to electrochemical biosensing. G-COOH with high conductivity and good biocompatibility could act as an electron transfer bridge for enhancing the electron transfer reactivity of Mb. In phosphate buffer solution (pH 6.0) Mb exhibited a pair of good-shape redox peaks on cyclic voltammogram with the formal peak potential (E°) as -0.255 V (vs. SCE). Electrochemical studies of Mb were checked with electrochemical parameters calculated. Mb molecules on the electrode displayed excellent electrocatalytic reduction to trichloroacetic acid (TCA). The current showed a linear response to TCA concentrations from 5.0 to 57.0 mmol L⁻¹ with a low detection limit (1.0 mmol L⁻¹). The Michaelis–Menten constant (K_M⁰) of the fabricated Mb bioelectrode for TCA was determined as 1.30 mmol L⁻¹. Therefore the usage of G-COOH established an effective platform for direct electrochemistry of redox enzymes in the field of third-generation electrochemical sensor.

Keywords: Carbon ionic liquid electrode; Carboxyl graphene; Myoglobin; Direct electrochemistry; Electrocatalysis.