International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Short Communication

Hydrothermal Synthesis of NiS₂ Cubes with High Performance as Counter Electrodes in Dye-Sensitized Solar Cells

Chenle Zhang#^{1,2}, Libo Deng#², Peixin Zhang^{1,2,*}, Xiangzhong Ren², Yongliang Li² and Tingshu He¹

#These authors contributed equally to this work.

doi: 10.20964/2017.05.100

Received: 7 October 2016 / Accepted: 31 October 2016 / Published: 12 April 2017

Electrocatalytic NiS_2 cubes were directly synthesized on F-doped tin oxide using a hydrothermal approach and used as counter electrode in dye-sensitized solar cells (DSSCs). The NiS_2 cubes displayed an excellent electrocatalytic activity in the reduction of I_3 showing a power conversion efficiency of 5.56%, which is close to that of the Pt-containing DSSC (7.05%). Furthermore, the NiS_2 cubes showed a comparable stability to Pt. This is ascribed to the low resistance to diffusion and transfer of electrolyte ions. These results suggest that the NiS_2 cubes prepared through a facile process is a promising substitute to Pt electrode.

Keywords: Nickel disulfide cubes; counter electrode; dye-sensitized solar cells

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

¹ School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shanxi 710055, PR China

² College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China

^{*}E-mail: pxzhang2000@163.com