Cu–W Thin Film Electrodeposited in an Aqueous Solution

M. Saitou

University of the Ryukyus, Department of Mechanical Systems Engineering, 1 Senbaru Nishihara-cho Okinawa, 903-0213, Japan.
E-mail: saitou@tec.u-ryukyu.ac.jp

doi: 10.20964/2017.06.78

Received: 21 March 2017 / Accepted: 23 April 2017 / Published: 12 May 2017

Cu-W thin films were electrodeposited on indium tin oxide (ITO) glass substrates in an aqueous solution using a rectangular pulse current technique in a range of frequency from 0.2 MHz to 1 MHz. The W concentration in the Cu-W thin film measured with energy dispersive X-ray spectroscopy (EDX) was dependent on an amplitude and frequency of the rectangular pulse current. The maximum W concentration in the Cu-W thin film was 9 wt. %. X-ray diffraction (XRD) revealed that the Cu-W thin film had crystallographic planes parallel to the ITO glass substrate such as (111), (200), (220), and (311) planes. Surface images of the Cu-W thin film observed with scanning electron microscope (SEM) showed an aggregation of an island called a nano cauliflower. These experimental results indicate that the Cu-W thin film was an alloy comprising copper and tungsten, and that tungsten was electrodeposited in the aqueous solution free of the iron-group element.

Keywords: Cu-W thin film; aqueous solution; megahertz; nano cauliflower; iron-group element

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).