Hydrothermal Synthesis and Electrochemical Performance of Al-doped VO$_2$(B) as Cathode Materials for Lithium-Ion Battery

Zhengguang Zou*, Zhongliang Hou, Jilin Wang, Yao Gao, Zhendong Wan and Shichang Han

Ministry-province Jointly-constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guilin University of Technology, Guilin, China.

*E-mail: zouzgglut@163.com

doi: 10.20964/2017.06.59

Received: 24 January 2017 / Accepted: 2 April 2017 / Published: 12 May 2017

Al-doped VO$_2$(B) nanobelts have been successfully synthesized via the hydrothermal method using V$_2$O$_5$, C$_6$H$_{12}$O$_6$·H$_2$O and Al(NO$_3$)$_3$·9H$_2$O as reactants. XRD, FESEM, EDS and XPS were introduced to characterize the phase, morphology, compositions and chemical state of the samples. Electrochemical properties of the samples were studied by charge/discharge tests, electrochemical impedance spectra (EIS) and cyclic voltammetry (CV). The result showed that the length and width of the nanobelts were increased significantly after doping Al$^{3+}$. When the doping molar ratio of Al to V was 1/6.9, the product was flower like particles which composed of nanobelts and exhibited the best cycling performance. The initial discharge capacity was 282 mAh·g$^{-1}$ and maintained 202 mAh·g$^{-1}$ after 50 cycles at the density of 32.4 mAh·g$^{-1}$. The retention rate of capacity was 71.6%, which was better than that of the undoped sample (61%). The enhanced electrochemical performance was attributed to its higher total conductivity and better structure stability.

Keywords: Lithium-ion battery; VO$_2$(B); Hydrothermal method; doping; electrochemical performance

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).