Spinel LiMn$_2$O$_4$ with Two-step Nano-Al$_2$O$_3$ Coating as High Performance Positive Materials

Yannan Zhang1, Peng Dong2, Xiaohua Yu3, Shubiao Xia4, Jinjie Song5, Ruiming Yang1, Huixin Liang2, Zhezhong Shi1, Yao Yao2, Xue Li2,*, Yingjie Zhang1,*

1National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
2National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
3National Engineering Research Center of Waste Resource Recovery, Kunming University of Science and Technology, Kunming 650093, China
4Faculty of Chemistry & Chemical Engineering, Qujing Normal University, Qujing 655011, China
5Key Laboratory of Mesoscale Severe Weather/Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China

*E-mail: 438616074@qq.com, zyjkmust@126.com

Received: 8 April 2017 / Accepted: 12 May 2017 / Published: 12 June 2017

do: 10.20964/2017.07.56

To study the influence of the uniformity and integrity of amphoteric metal oxide coating layers on the performance of positive materials in Lithium-ion batteries, nano-Al$_2$O$_3$-coated LiMn$_2$O$_4$ positive material were synthesized by using a two-step sol-gel process. The products were characterized by power X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), energy-dispersive X-ray spectrum (EDX), X-ray photoelectron spectroscopy (XPS), galvanostatic charge-discharge test system, and inductively-coupled plasma emission spectrograph (ICP-AES). The results show that the two step method coating can bring with the uniform and glabrous nano-Al$_2$O$_3$ layer tightly coupling with the surface of the LiMn$_2$O$_4$ particles, when being positive material for Lithium-ion batteries, which exhibits capacity losses of only 13.2 \% at 60 \degree C, after 300 cycles, much better than those of the pristine material and the sample synthesized by conventional one step sol-gel method (with the same Al$_2$O$_3$-coating content). Moreover, the ICP-AES tests of Mn$^{2+}$ reveal that the Al$_2$O$_3$ layers with two step coating layer plays an important role in protecting LiMn$_2$O$_4$ from the electrolyte corrosion.

Keywords: LiMn$_2$O$_4$, sol-gel process, positive materials, lithium-ion batteries
FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).