One-step Preparation of Alkaline Lignin-based Activated Carbons with Different Activating Agents for Electric Double Layer Capacitor

Yan Wu, Jing-Pei Cao *, Zhi-Qiang Hao, Xiao-Yan Zhao **, Qi-Qi Zhuang, Jun-Sheng Zhu, Xing-Yong Wang, Xian-Yong Wei

Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
*E-mail: caojingpei@cumt.edu.cn; beyondcao@hotmail.com; beyondcao_2000@163.com
**E-mail: zhaoxiaoyan@cumt.edu.cn

doi: 10.20964/2017.08.01

Received: 3 May 2017 / Accepted: 29 May 2017 / Published: 12 July 2017

Different structured activated carbons (ACs) were made from lignin (alkaline) by one-step activation. Using ZnCl₂, KOH and K₂CO₃ as activating agents and the effect of activating agents on the electrochemical properties of the ACs for electric double layer capacitor (EDLC). The ACs prepared by the three kinds of activating agents are mainly microporous, while the ZnCl₂-activated and KOH-activated ACs contain mesoporous through the nitrogen adsorption-desorption test. All the ACs used as electrode for EDLC showed excellent cyclability. The small amount of CO₂ produced by K₂CO₃ decomposition involved in the activation reaction and a series of reactions between carbon of lignin and K₂CO₃, giving a AC with the maximum specific surface area of 1585 m² g⁻¹, and the best specific capacitance (Cₛ) performance of 263.46 F g⁻¹ at the current density 40 mA g⁻¹, using a two-electrode system. The results indicate that the K₂CO₃ as activating agent to prepared lignin-based AC applied in EDLC is appropriate.

Keywords: Activated carbon; Activating agent; Lignin; EDLC; Specific capacitance.