A Novel Photoelectrochemical Sensor for Thiamphenicol Based on Porous Three-Dimensional Imprinted Film

Guangming Yang1,*, Xianlan Chen1, Qingshan Pan1, Wei Liu1,*, and Faqiong Zhao2,*

1 Key Laboratory of Local Characteristic Resource Utilization and New Materials of Yunnan, College of Science, Honghe University, Mengzi 661100, PR China
2 Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
*E-mail: yangguangmingbs@126.com, liuwei4728@163.com, fqzhao@whu.edu.cn
doi: 10.20964/2017.08.34

Received: 8 October 2016 / Accepted: 30 May 2017 / Published: 12 July 2017

In this study, we designed a novel photoelectrochemical (PEC) sensor for thiamphenicol (TAP), which based on porous graphene (P-r-GO), MoS2 nanoflower, dendritic Pt-Pd NPs (Pt-Pd NPs), amino multi-walled carbon nanotubes (NH2-MWCNTs), molecularly imprinted polymer (MIP) and L-shape glassy carbon electrode (L-GCE). Firstly, MoS2 and P-r-GO nanoflower composite was prepared by one-step hydrothermal method. Then, this composite suspension was coated on L-GCE surface to virtually form a porous interface. After that, the suspension of Pt-Pd NPs and NH2-MWCNTs was dropped onto MoS2-P-r-GO / L-GCE. Subsequently, TAP was imprinted on above modified electrode by cyclic voltammetry as o-phenylenediamine was monomer. Afterwards, ascorbic acid was selected as a photocurrent probe when TAP was removed from MIP film and adsorbed on sensing surface. The resulting PEC sensor possessed excellent response for TAP, and its linear range was $1.0 \times 10^{-9} \sim 3.5 \times 10^{-6}$ mol L$^{-1}$ with the detection limit of 5.0×10^{-10} mol L$^{-1}$. This sensor was used to determine TAP in real food samples with favorable results.

Keywords: Photoelectrochemical sensor; Thiamphenicol; Porous graphene; MoS2; Molecularly imprinted polymer

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).