Electrochemical Deposition of Bright Nickel on Titanium Matrix from Ammoniacal Solution in the Presence of Thiourea

Liang Yuan1,2, Jiugang Hu1,*, Zhiying Ding1, Shijun Liu1,*

1 School of chemistry and chemical engineering, Central South University, Changsha 410083, PR China.
2 School of new energy science and engineering, Xinyu University, Xinyu 338004, PR China.
*E-mail: hjg.csu@gmail.com, shijunliu@csu.edu.cn

doi: 10.20964/2017.08.56

Received: 6 May 2017 / Accepted: 16 June 2017 / Published: 12 July 2017

The electrodeposition behaviors of nickel on titanium cathode were investigated in ammoniacal electrolyte in the absence and presence of thiourea. Tafel polarization curve and cyclic voltammogram studies demonstrate that with the presence of thiourea stimulates cathodic polarization and shifts the nucleation potential (E_{nu}) towards more negative values. Moreover, the electrodeposition of nickel proceeds via 3D instantaneous nucleation whatever the presence of thiourea or not. There is noticeable improvement in surface morphology and deposit quality by introducing thiourea to the bath. Smooth and bright nickel deposits with small globular nickel crystals can be obtained when thiourea concentration is over 25 mg/L. The X-ray diffraction analysis indicates that thiourea can influence the crystallographic orientations of nickel crystals, thus improving the grain refinement and surface smoothness. Moreover, the effects of thiourea on the cathodic current efficiency (CE), energy consumption (EC) and kinetics parameters of cathodic process were also discussed. These results are beneficial for the nickel metallurgy or nickel plating in ammoniacal media.

Keywords: Nickel electrodeposition; Thiourea additive; Inhibiting nucleation; Bright surface

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).