Electrochemical degradation of diclofenac for pharmaceutical wastewater treatment

Zhaoqi Ji¹, Tao Liu², Hong Tian³,*

¹College of Civil Engineering and Architecture, Shandong University of Science and Technology, No.579 Qianwangang Rd, Qingdao Development Zone, Shandong, 266590, China
²College of Environmental Science and Engineering, Ocean University of China, No.238 Songling Rd, Laoshan, Qingdao, Shandong, 266100, China
³College of Earth Science and Engineering, Shandong University of Science and Technology, No.579 Qianwangang Rd, Qingdao Development Zone, Qingdao, Shandong, 266590, China
*E-mail: htiancn@163.com

doi: 10.20964/2017.08.72

Received: 15 March 2017 / Accepted: 13 June 2017 / Published: 12 July 2017

Pharmaceutical compounds are potential bioactive chemicals in the environment, and their removal from water has aroused increasing concern. Novel electrochemical techniques have demonstrated potential application in the treatment of wastewater containing pharmaceuticals. In this study, the degradation of diclofenac in aqueous solution was carried out by an electrooxidation method with boron-doped diamond (BDD) and Ta/PbO₂ anodes. The influence of various operating parameters, such as the applied current density, temperature, initial concentration of diclofenac and pH value, on the degradation efficiency of diclofenac with the Ta/PbO₂ anode was systematically investigated. In comparison with the BDD anode, the Ta/PbO₂ anode possessed a higher oxidation rate and current efficiency.

Keywords: Electrochemical oxidation; Pharmaceutical wastewater; Ta/PbO₂; Removal; BDD

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).