Corrosion Resistance and Mechanical Property Enhancement of SPCC Steel Using an Induction Heat Treatment

Chien-Hung Lin¹*, Jia-Ren Lee², Hung-Hua Sheu³, Sung-Ying Tsai⁴

1 Department of Physics, ROC Military Academy, Feng-Shan, Kaohsiung, Taiwan
2 Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan
3 Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan City, Taiwan
4 Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Tao-Yuan 325, Taiwan
*E-mail: linhungcma@gmail.com

doi: 10.20964/2017.09.13

Received: 24 April 2017 / Accepted: 21 June 2017 / Published: 13 August 2017

Rapid quenching and subsequent tempering treatment are used extensively to enhance the performance of steel in the manufacture industry. The effect of an induction heat treatment on the microstructure, mechanical properties and corrosion resistance of SPCC (Steel Plate Cold-rolled Commercial) steel is discussed in this study. The surface profile of the SPCC steel was analysed using AFM (atomic force microscopy), which showed that grain growth occurred after the induction heat treatment. The corrosion behaviour was investigated using potentiodynamic measurements in the presence of a 5 wt% NaCl solution. The corrosion current density of the SPCC steel specimens with and without a quenching treatment were 6.66×10^{-5} and 3.78×10^{-4} A/cm², respectively. It was demonstrated that the grain refinement effectively enhanced the corrosion resistance of the SPCC steel. The stress-strain diagram, upper yield point, ductility and yield elongation shifted due to the induction heat treatment. Hence, the experimental results showed that the hardness and the tensile properties of these specimens were clearly correlated to the microstructures. A comparison between the analytical and experimental results exhibits consistent agreement. The proposed methodology improves the performance of the SPCC steel and helps to promote its development in the near future.

Keywords: SPCC steel, induction heat treatment, corrosion, grain growth, yield elongation.

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).