Porous Carbons Derived from Lignite Mixed with Zn$^{2+}$-Doped Lignin for Electric Double-Layer Capacitor

Yan Wu, Xiao-Yan Zhao *, Jing-pei Cao **, Shan He, Zhi-Qiang Hao, Hua-Yang Yu, Guo-Yu Sun, Xian-Yong Wei

Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

*E-mail: zhaoxiaoyan@cumt.edu.cn
**E-mail: caojingpei@cumt.edu.cn, beyondcao@hotmail.com, beyondcao_2000@163.com

doi: 10.20964/2017.09.29

Received: 3 June 2017 / Accepted: 11 July 2017 / Published: 13 August 2017

A series of porous carbons (PCs) were prepared from lignin chelating with Zn$^{2+}$ and mixed with lignite. KOH was used as the activated agent during preparation process. The influences of preparation parameters including the content of lignin chelated with Zn$^{2+}$, KOH/sample ratio and activation temperature on specific surface area (SSA), pore size distribution and electrochemical performances were investigated in this study. All the PCs were mainly micropores through nitrogen adsorption isotherms test. The PCs derived from the lignin chelating with Zn$^{2+}$ present high SSA and total pore volume than that in the absence of Zn$^{2+}$. In addition, the PC prepared from adding lignin to lignite has larger SSA than the PC prepared from lignite. The PC prepared with Zn$^{2+}$ account for 30% of lignin mass, KOH/sample ratio of 3:1 and activation temperature of 700 °C has the largest SSA of 3311 m$^2$ g$^{-1}$. When it was used as electrode for electric double-layer capacitor, the specific capacitance reached the highest value of 280.43 F g$^{-1}$ at a current density of 40 mA g$^{-1}$. The results demonstrate that the lignin chelating with Zn$^{2+}$ then add to the lignite can significantly improve PCs performance.

Keywords: Lignin; Lignite; Porous carbons; High surface area; EDLC

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).