Electrochemical Properties of Deactivated CuO\textsubscript{x}/Active Carbon Catalyst

Hanqing Zhao1, Liqin Wang1, Shoudong Xu2, Ding Zhang2, Guoqiang Zhang1, Shibin Liu2 and Zhong Li1,*

1Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
2College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
*E-mail: lizhong@tyut.edu.cn

doi: 10.20964/2017.09.32

Received: 6 May 2017 / Accepted: 30 June 2017 / Published: 13 August 2017

Low-cost and high-performance electrodes are desired for energy storage devices such as lithium-ion (Li-ion) batteries. In this work, CuO\textsubscript{x}/active carbon (CuO\textsubscript{x}/AC), originated from the deactivated catalyst for synthesizing dimethyl carbonate (DMC), was characterized as Li-ion battery anodes. Various copper valences (Cu0, Cu+ and Cu2+) exist on the surface and inside of the nanoparticle catalyst. After simple heat-treatment, the sample exhibits a storage capacity of 621.3 mAh-1 after 100 cycles at a current density of 100 mA-1, which changes to 359.6 mAh-1 at a high current density of 1 A-1 after 500 cycles. This excellent behaviour can be ascribed to synergetic effect of CuO\textsubscript{x} nanoparticles/actived carbon support and CuO/Cu\textsubscript{2}O, which can synergistically strengthen the intrinsic properties of each component. Additionally, functional groups on AC surface can promote Li-ion storage performance. This work shows good electrochemical properties and potential application of CuO\textsubscript{x}/AC deactivated catalyst as Li-ion battery anodes.

Keywords: recycle utilization; CuO\textsubscript{x}/active carbon; deactivated catalysts; lithium-ion battery anodes

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).