An Electrochemical Investigation of the EDTA Influence on the Cobalt-Manganese Electrodeposition in Aqueous Chloride Electrolytes

Huihui Zhang¹,*, Juntao Yuan², Ming Zhu¹

¹ School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
² State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi’an 710077, China
*E-mail: hhzhang_xust@163.com

doi: 10.20964/2017.09.51

Received: 12 May 2017 / Accepted: 13 July 2017 / Published: 13 August 2017

After subsequent proper heat treatment, a Co-Mn alloy coating is potentially a protective and conductive coating on ferritic stainless steel interconnects in solid oxide fuel cells. In this paper, we use electrochemical measurements to report the effects of EDTA (disodium ethylenediaminetetraacetate) in a chloride electrolyte on the Co-Mn electrodeposition process. The addition of EDTA to the chloride electrolyte significantly shifts the reduction reaction potential of cobalt in a more negative direction while slightly altering the discharging potential of manganese and most importantly, shortening to a great extent the discharge potential difference between Co²⁺ and Mn²⁺. Also, it is crucial to control the [Co²⁺]/[EDTA] ratio to form completely complexed cobalt ions and a very small amount of complexed manganese ions, and thus to promote the deposition of the Co-Mn alloy. The addition of EDTA to the chloride electrolyte is a promising way to prepare a Co-Mn alloy coating via electrodeposition.

Keywords: Electrodeposition; Interconnect; Cobalt-manganese; Disodium ethylenediaminetetraacetate; Cyclic voltammetry

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).