Simultaneous Quantitation of Caffeic Acid and Ferulic Acid Based on Graphite-like C_3N_4/chitosan Modified Film

Lijun Jing1, Jun Lin1, Qiqi Fei1, Haowei Tang3, Xiaodi Yang1,*, Chong Sun2,*

1 Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China and Changzhou Innovation & Development Institute of Nanjing Normal University, Changzhou 2130000, China
2 Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
3 Nanjing Foreign Language School, Nanjing 210008, China
*E-mail: yangxiaodi@njnu.edu.cn, sunchong0106@163.com

doi: 10.20964/2017.09.48

Received: 18 May 2017 / Accepted: 11 July 2017 / Published: 13 August 2017

Caffeic acid (CA) and ferulic acid (FA), as the simple phenolic acids, widely exist in plants and food. In this experiment, a novel method based on graphite-like carbon nitride ($\text{g-}\text{C}_3\text{N}_4$) and chitosan (CS) was applied to determinate CA and FA in food samples. X-Ray diffraction (XRD), fourier transform infrared spectrometer (FTIR), ultraviolet visible spectrophotometer (UV-\textit{vis}) and transmission electron microscope (TEM) were illustrated that $\text{g-}\text{C}_3\text{N}_4$ was synthesized successfully and had a unique two-dimensional structure. Under the optimized conditions, including the scan rate, pH and so on, the modified electrode had a sensitive response to CA and FA in the range of 1-30 $\mu\text{g/mL}$ and 5-30 $\mu\text{g/mL}$ with the detection limits of 0.354 $\mu\text{g/mL}$ and 4.964 $\mu\text{g/mL}$ (S/N=3), respectively. The electrochemical method showed satisfactory results and provided a new approach to determinate phenolic acids with many advantages, such as rapid response, easy operation, low cost and highly sensitive.

Keywords: Graphite-like carbon nitride; Caffeic acid; Ferulic acid; Electrochemical determination

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).