Structure and Electrochemical Properties of Hierarchically Porous Silicon Film Prepared with the Combination of Magnetron Sputtering Deposition and Metal-Assisted Chemical Etching

Yan Zhao¹,², Zhengjun Liu¹, Chunyong Liang¹,²,*, M. Yu. Maximov⁴, Baoxi Liu¹,², Junming Wang³, Fuxing Yin¹,²

¹ School of Material Science & Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
² Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
³ Synergy Innovation Institute of GDUT, Heyuan, Guangdong Province, China
⁴ Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195221, Russia
*E-mail: liangcy_hebut@outlook.com

doi: 10.20964/2017.09.16

Received: 5 February 2017 / Accepted: 22 June 2017 / Published: 13 August 2017

A novel hierarchically porous silicon film on Cu foil was fabricated by employing the combination of magnetron sputtering deposition and metal-assisted chemical etching technology. The as-prepared porous Si film were directly used as working electrodes without adding of binder or electron conductive agent, which exhibited high specific capacities and stable cyclability. Specifically, a high initial discharge capacity of 1976 mAh g⁻¹ is attained at a current density of 300 mA g⁻¹ and a stable discharge capacity of 1629 mAh g⁻¹ obtained after 100 cycles. This superior electrochemical properties could be ascribed to the unique hierarchically porous structure, effectively buffering volume changes during the charge/discharge process.

Keywords: Hierarchically Porous Si film, Metal-assisted chemical etching, Magnetron sputtering deposition, Lithium-ion battery.

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).