LiNi$_{0.5}$Mn$_{1.45}$Zn$_{0.05}$O$_4$ with Excellent Electrochemical Performance for Lithium Ion Batteries

Hongyan Sun1,2, Xin Kong1,2, Baosen Wang1,2, Tingbi Luo1,2, Guiyang Liu1,2,*

1 Department of Chemistry, College of Science, Honghe University, Mengzi, 661199, Yunnan, China
2 Local Characteristic Resource Utilization and New Materials Key Laboratory of Universities in Yunnan, Honghe University, Mengzi 661199, Yunnan, China.

*E-mail: liuguiyang@tsinghua.org.cn

doi: 10.20964/2017.09.03

Received: 24 May 2017 / Accepted: 26 June 2017 / Published: 13 August 2017

Pure LiNi$_{0.5}$Mn$_{1.45}$Zn$_{0.05}$O$_4$ with a mixture of ordered and disordered phase has been successfully synthesized by a low temperature solution combustion synthesis method at 700°C. The phase structure and micro morphologies are investigated by X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The electrochemical properties are studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge testing. The results indicate that the substitution of Zn on Mn site in the LiNi$_{0.5}$Mn$_{1.5}$O$_4$ can improve the cycling stability both at room temperature and even at elevated temperature 55°C and the rate capability significantly. The initial specific capacity at 1C rate of LiNi$_{0.5}$Mn$_{1.45}$Zn$_{0.05}$O$_4$ is 140.4mAh/g, and can remain 95% after 400 cycles at room temperature and 92.9% after 100 cycles at 55°C. The specific capacity of LiNi$_{0.5}$Mn$_{1.45}$Zn$_{0.05}$O$_4$ is high to 125.3mAh/g at 10C, and the capacity retention is still 95.4% after 100 cycles at 10C compared with the first cycle at 10C. The excellent performance of LiNi$_{0.5}$Mn$_{1.45}$Zn$_{0.05}$O$_4$ is ascribed to its better crystallinity, higher conductivity and higher lithium diffusion coefficient (D_{Li}).

Keywords: Lithium-ion batteries, LiNi$_{0.5}$Mn$_{1.5}$O$_4$ spinels, Zn doping, rate capability

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).