Facile Preparation of Layered Ni(OH)$_2$/Graphene Composite from Expanded Graphite

Renjie Qu1,2,#, Zhen Dai1,3,#, Shuihua Tang1,2,*, Zhentao Zhu1,2 and Geir Martin Haarberg4,*

1 State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, China.
2 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, P R China
3 School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P R China
4 Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway.
with identical contributions
*E-mail: spraytang@hotmail.com, geir.martin.haarberg@ntnu.no

doi: 10.20964/2017.10.72

Received: 30 June 2017 / Accepted: 11 August 2017 / Published: 12 September 2017

A layered Ni(OH)$_2$/graphene composite was firstly prepared by electrochemical deposition of nickel nanoparticles between layers of expanded graphite in Ni$^{2+}$ containing solution, and then the deposited nickel nanoparticles were converted into Ni(OH)$_2$ via cyclic voltammetry in 6 M KOH electrolyte. Images of transmission electron microscopy show that Ni(OH)$_2$ particles are uniformly distributed on graphene sheets with an average diameter of 6 nm. The Ni(OH)$_2$/graphene composite with an areal loading of 5 mg cm$^{-2}$ demonstrates a maximum specific capacitance of 856 F g$^{-1}$ at 1 A g$^{-1}$, and 79 % of the specific capacitance can be retained after 2000 cycles at a current density of 10 A g$^{-1}$. Commercial expanded graphite is much cheaper than activated carbon and considerably much cheaper than graphene, therefore this technique is very promising for mass production of supercapacitor electrodes.

Keywords: Expanded graphite; Layered Ni(OH)$_2$/graphene; Electrodeposition; Supercapacitors; Nickel nanoparticle

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).