Electrochemical Determination of Gliclazide on Magnetic Core-Shell Fe₃O₄@SiO₂ Functionalized Multiwall Carbon Nanotubes Modified Glassy Carbon Electrode

Mohammad Reza Ganjali¹,²,*, Hadiseh Salimi³, Somayeh Tajik⁴, Hadi Beitollahi⁴,*, Alireza Badiei⁵,⁶, Ghodsi Mohammadi Ziarani⁷

¹ Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
² Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
³ Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
⁴ Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
⁵ School of Chemistry, College of Science, University of Tehran, Tehran, Iran
⁶ Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
⁷ Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran
*E-mail: ganjali@khayam.ut.ac.ir (MR Ganjali); h.beitollahi@yahoo.com (H. Beitollahi)

doi: 10.20964/2017.10.63

Received: 30 June 2017 / Accepted: 8 August 2017 / Published: 12 September 2017

The report covers the construction of a novel modified glassy carbon electrode (GCE), using magnetic core-shell Fe₃O₄@SiO₂ and multi-walled carbon nanotubes (MWCNTs). The resulting device was then tested as a tool for the sensitive and selective analysis of traces of gliclazide (GLZ). The effects of different parameters, i.e. pH of the test solution, and the scan rate applied during the electrochemical determination process on the performance of the resulting electrode were also assessed. The results obtained under the optimal conditions showed the response of the electrode to gliclazide to be linear over a rather wide range of 5.0 × 10⁻⁶ to 8.0 × 10⁻⁴ M, and a detection limit of as low as 2.1 × 10⁻⁶ M (pH=7.0). The proposed sensor was successfully applied for the determination of gliclazide in real samples.

Keywords: Gliclazide, Magnetic core-shell Fe₃O₄@SiO₂/MWCNT nanocomposite, Glassy carbon electrode, Voltammetry

FULL TEXT