Electrochemical Performance of LiNi$_{0.3}$Co$_{0.3}$Mn$_{0.3}$O$_2$-Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$ Composites Prepared by Dielectric Barrier Discharge Plasma Assisted Milling

Xing Hua Liang1, Yu Chao Zhao*, Di Han1, Qing Quan Chang1, Mei Hong Huang1

Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545600, China

*E-mail: zyc19910815@foxmail.com

doi: 10.20964/2017.10.70

Received: 17 July 2017 / Accepted: 13 August 2017 / Published: 12 September 2017

The development of electric vehicles and portable electronic devices demand lighter and thinner batteries with improved specific charge and rate capabilities. In this work, we prepared LiNi$_{0.3}$Co$_{0.3}$Mn$_{0.3}$O$_2$ (NCM) using a co-precipitation route. Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$(LATP) was synthesized using a solid state reaction method. LiNi$_{0.3}$Co$_{0.3}$Mn$_{0.3}$O$_2$-Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$ (NCM-LATP) composites, with spherical agglomerates of NCM particles being homogenously dispersed in micro-sized LATP matrix, had been prepared by dielectric barrier discharge plasma assisted milling (DBD-milling) for the first time. We analyzed surface morphologies and structures of the LATP, NCM and NCM-LATP samples by using scanning electron microscopy (SEM) and X-ray diffraction (XRD). We analyze performances of model NCM-LATP materials. The results show that the NCM-LATP composites exhibits excellent cycles tability to reach 127.4, 118.7 and 109.5 mAh g$^{-1}$ at 0.2, 0.5 and 1C (at room temperature), respectively. The NCM-LATP composites cathode and NCM cathode had a discharge capacity of 155.9 and 136.2 mAh g$^{-1}$ at the first cycle, and the corresponding coulombic efficiencies are 92.96% and 74.75%, at 0.05 C. Charge-discharge curves, Cyclic voltammetry and AC impedance response indicated that both NCM and LATP phases in the composite cathode were involved during the oxidation-reduction reactions and the electron transport resistance in the pure NCM cathode was much higher than that in the NCM-LATP composites cathode.

Keywords: LiNi$_{0.3}$Co$_{0.3}$Mn$_{0.3}$O$_2$-Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$ composites; discharge plasma; ball milling; cathode; lithium-ion batteries

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).