Corrosion Behavior of the Al_2Cu Intermetallic Compound and Coupled Al_2Cu/Al

Herong Zhou^{1,2,*}, Wang Yao², Cuiwei Du³, Shupeng Song², Run Wu²

*E-mail: <u>zhouhr_9@163.com</u>

doi: 10.20964/2017.10.32

Received: 8 April 2017 / Accepted: 25 July 2017 / Published: 12 September 2017

The corrosion behavior of intermetallic Al_2Cu has been investigated using polarization, electrochemical impedance spectroscopy (EIS), scanning kelvin probe (SKP), local electrochemical impedance (LEIS) and scanning electron microscopy. The corrosion potential of intermetallic Al_2Cu is measured to be -473.04 mV in 0.1 M Na_2SO_4 solution with pH 4.3. The highest corrosion rate over the immersing time between 0 and 96 h is observed at 48 h according to the EIS results. The potential results of coupled Al_2Cu/Al reveal that the Al_2Cu potential becomes positive during the immersion time and is higher than that of pure Al near the interface. The local impedance value of intermetallic Al_2Cu increases greatly and is higher than that of pure Al. Thus, the corrosion degree of pure Al is more severe than that of intermetallic Al_2Cu because of the galvanic corrosion of coupled Al_2Cu/Al .

Keywords: intermetallic Al₂Cu; corrosion behavior; EIS; SKP; LEIS

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

¹ The State Key Laboratory of Refactories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, PR China;

² School of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, PR China:

³ University of Science and Technology Beijing, Beijing, 100083, PR China;