Preparation of Ni(OH)$_2$/MWCNTs Composite for Supercapacitor Application

Junhua Wu1,*, Fei Ge1 and Yingjie Li2

1 School of Automotive and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
2 College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
*E-mail: wujunhuanj@163.com
doi: 10.20964/2017.10.82

Received: 22 June 2017 / Accepted: 18 August 2017 / Published: 12 September 2017

In this work, flexible supercapacitor electrodes were fabricated using a simple chemical strategy in which nanocrystalline Ni(OH)$_2$ was coated on multiwalled carbon nanotubes (MWCNTs). Ni(OH)$_2$/MWCNT thin films were deposited on large-area flexible substrates using the simple successive ionic layer adsorption and reaction (SILAR) strategy proposed in this report. The specific capacitance (SC) of the Ni(OH)$_2$/MWCNT films was determined to be 1466 F/g in aqueous KOH solution (2 M) at a scan rate of 5 mV/s. A facile three-beaker SILAR configuration was used to prepare the electrodes at room temperature, providing a facile route to the fabrication of flexible supercapacitors with high energy and power levels. An extensive variety of Ni(OH)$_2$/MWCNT-like materials could be prepared using a general strategy based on our proposed technique, and these materials could be used in applications beyond electrochemical energy storage.

Keywords: Supercapacitor; Ni(OH)$_2$; Graphene; Vehicular application; Multi-walled carbon nanotube

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).