Short Communication

Synthesis and First-principle Calculation of TiO$_2$ Rutile Nanowire Electrodes for Dye-sensitized Solar Cells

Jinghua Hu1,**, Peihan Liu1,**, Mengwei Chen1, Sa Li2, Yingping Yang1,*

1School of Science, Wuhan University of Technology, Wuhan 430070, China
2KTH Royal Institute of Technology, Department of Material Science & Engineering, SE-10044 Stockholm, Sweden

** Jinghua Hu, Peihan Liu have been contributed equally to this work

*E-Mail: ypyang@whut.edu.cn

doi: 10.20964/2017.10.47

Received: 28 June 2017 / Accepted: 8 August 2017 / Published: 12 September 2017

In this paper, a TiO$_2$ nanowire film synthesized via a hydrothermal method was prepared as a photoanode for dye-sensitized solar cells (DSSCs). The synthesized TiO$_2$ nanowires were characterized by transmission electron microscopy and X-ray diffraction. The TiO$_2$ nanowire film greatly improved the efficiency of the DSSC owing to the rapid interfacial electron transport in the one-dimensional TiO$_2$ nanowires. The light absorption and interfacial electron transport, which play important roles in the efficiency of DSSCs, were investigated by UV-vis absorption spectroscopy and electrochemical impedance spectroscopy. The energy band structure and electron density of states of the rutile nanowire were calculated using a first-principles method and compared to bulk anatase and rutile TiO$_2$ phases. The band gap of the rutile TiO$_2$ nanowire was found to be less than that of anatase TiO$_2$ by 0.6 eV. Further calculations using GGA+U yielded a similar band gap reduction. In addition to the redshift of the absorption edge originating from the smaller band gap, the larger surface area of the TiO$_2$ nanowire compared to the bulk material is expected to facilitate the migration of photogenerated electrons and holes from inside to the surface of the material. This would result in a considerable improvement of the photocatalytic efficiency of TiO$_2$.

Keywords: TiO$_2$; Nanowire; First-principles; Band gap; DSSCs

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).