Short Communication

Study on corrosion inhibition of Q235 steel in HCl solution by 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene diperchlorate

Wan Gou¹, Chuan Lai¹,², Zhen Xiang²,*

¹ School of Chemistry and Chemical Engineering, Eastern Sichuan Sub-center of National Engineering Research Center for Municipal Wastewater Treatment and Reuse, Sichuan University of Arts and Science, Dazhou 635000, PR China
² College of Chemistry and Environmental Engineering, Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, PR China
*E-mail: tougaolc@163.com

doi: 10.20964/2017.11.50

Received: 6 August 2017 / Accepted: 6 September 2017 / Published: 12 October 2017

The corrosion inhibition of Q235 steel in HCl solution by 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene diperchlorate (HMTADE-2HClO₄) has been studied using potentiodynamic polarization, weight loss measurement and microstructure analysis. Measurements results suggest that HMTADE-2HClO₄ is an effective mixed-type inhibitor, the inhibition efficiency increase with HMTADE-2HClO₄ concentration increasing, decrease with temperature and HCl concentration increasing, and slightly fluctuate with storage time changing. The experimental results are further suggest that the adsorption of HMTADE-2HClO₄ on Q235 steel surface obeys Langmuir isotherm, which is a mixed adsorption involving both physisorption and chemisorption.

Keywords: Macrocyclic; Corrosion; Inhibitor; Polarization; Adsorption.

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).