Preparation and Characterization of Polyaniline / Glassy Carbon Modified Electrode as an Electrocatalyst for the Production of Hydrogen from Et$_3$NHCl/[Bu$_4$N][BF$_4$]-CH$_3$CN Solution

M. M. El-Deeb1,2,*, K. Alenezi1, H. El Moll1, M. El-Masry1,3 and Z. Matarneh1

1 Chemistry Department, Faculty of Science, Ha’il University, 81451 Hail, P.O. Box 2440, KSA
2 Chemistry Department, Faculty of Science, Beni-Suef University, 62514 Beni-Suef, Egypt
3 Polymer Materials Research Department, Advanced Technology, and New Materials Research Institute, SRTA-City, New Borg El-Arab City 21934, Alexandria, Egypt
*E-mail: eldeebm@yahoo.com
doi: 10.20964/2017.11.71

Received: 9 July 2017 / Accepted: 12 September 2017 / Published: 12 October 2017

Crystalline, porous and fibril-like structure polyaniline film is electrodeposited on glassy carbon electrode from acidic solution. The electrochemical behaviour of polyaniline/glassy carbon modified electrode in [Bu$_4$N][BF$_4$]-CH$_3$CN solution is investigated using cyclic voltammetry technique. It shows a stable electroactive region which is related to the semiconducting state of polyaniline in nonaqueous medium. The electro-catalytic performance of the modified electrode toward Hydrogen Evolution Reaction (HER) from Et$_3$NHCl/[Bu$_4$N][BF$_4$]-CH$_3$CN solution shows a positive shift in the direct proton reduction potential as well as a higher catalytic reduction current density compared to the unmodified electrode with a good stability of 73.7 % current retention after 25 repetitive cycles. The electrocatalytic activity of the modified electrode is correlated to its morphology.

Keywords: polyaniline, Hydrogen Evolution Reaction, electrocatalysis, cyclic voltammetry, surface characterization

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).