Investigation of Carbon Supported Ru–Pt Nanoparticles for High–Performance Electrocatalytic Oxidation of Methanol

Long Quan Dang¹,², Manh Tuan Nguyen³,⁴, Nguyen Van Truong⁵, Phuoc Huu Le⁶,*, Nguyen Viet Long⁷,⁸

¹ Department of Physics, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho City, Vietnam
² Institute for Nanotechnology (INT), Vietnam National University - Ho Chi Minh City (VNU-HCM), Community 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
³ Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
⁴ Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Vietnam
⁵ Faculty of fundamental sciences, Thai Nguyen University of Technology, Thai Nguyen, Vietnam
⁶ Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho city, Vietnam
⁷ Ceramics and Biomaterials Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
⁸ Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
*E-mail: lhuuphuoc@ctump.edu.vn

doi: 10.20964/2017.11.61

Received: 3 August 2017 / Accepted: 12 September 2017 / Published: 12 October 2017

Platinum-nanoparticle-based catalysts are fascinating and widely used in fuel cells. This study is an attempt to develop low-cost and high performance of carbon supported Ru-Pt nanoparticles (NPs) for direct methanol fuel cells (DMFCs). We have synthesized RuPt/C, Ru@Pt/C, RuPt/MWCNT, and Ru@Pt/MWCNT nanomaterials by a facile two-step reduction method. X-ray diffraction (XRD) shows the f.c.c. Pt and h.c.p. Ru phases and the NPs are under a slight compressed strains. The synthesized NPs obtained small mean sizes (d_{mean} ≤ 3.9 nm) and narrow size distributions (1 – 9 nm). STEM-EDS line scan profiles reveal that architecture of Ru@Pt NPs composes of Ru-core and Pt-rich–Ru alloy shell, while that of RuPt alloy NPs exhibits random arrangement of Ru and Pt atoms. The Ru@Pt/MWCNT possessed the highest methanol oxidation activity with current density (J_f) of 182.4 mA.cm⁻² and the lowest electron transfer resistance (R_{et}) of 606 Ω as compared with the other samples. The outstanding performance of Ru@Pt/MWCNT could be attributed to the high Pt dispersion, the strong synergetic effect of the Ru@Pt NPs (i.e. improving CO poisoning tolerance and enhancing the intrinsic activity of Pt), and the high porosity and electrical conductivity of MWCNT support.
Keywords: Electrocatalysts, Ru@Pt nanoparticles, carbon support, methanol oxidation, cyclic voltammetry.