Synthesis of MnCo$_2$O$_{4.5}$/graphene Composite as Electrode Material for Supercapacitors

Yanhua Li, Xiahui Peng*, Jialian Xiang, Jiaxin Yang

Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
*E-mail: pxiahui630527@126.com
doi: 10.20964/2017.11.63

Received: 31 July 2017 / Accepted: 12 September 2017 / Published: 12 October 2017

MnCo$_2$O$_{4.5}$/graphene composite is obtained by a simple hydrothermal method. The as-synthesized MnCo$_2$O$_{4.5}$/graphene composite is characterized by X-ray diffraction, and scanning electron microscopy. Electrochemical property of MnCo$_2$O$_{4.5}$/graphene composite is carried out by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. MnCo$_2$O$_{4.5}$/graphene composite exhibits good supercapacitive performance. The specific capacitances of MnCo$_2$O$_{4.5}$/graphene composite at 5 mV s$^{-1}$ and at 0.5 A g$^{-1}$ are 255.8 and 252.3 F g$^{-1}$, respectively. 88.7% of the specific capacitance is retained for a 16-time current density increase, indicating its superior rate capability. At the 1000th cycle, MnCo$_2$O$_{4.5}$/graphene composite shows a specific capacitance of 225.6 F g$^{-1}$ at 1.0 A g$^{-1}$, which is 92.6% of initial specific capacitance, demonstrating its excellent cycling stability. These characteristics illustrate that MnCo$_2$O$_{4.5}$/graphene composite is a promising electrode material in supercapacitors.

Keywords: Supercapacitors, MnCo$_2$O$_{4.5}$, Graphene, Hydrothermal method

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).