Electrochemical Determination of the Anticancer Drug Capecitabine Based on a Graphene-Gold Nanocomposite-Modified Glassy Carbon Electrode

Qibing Zhang#, Xiaojun Shan#, Yu Fu, Pengyu Liu, Xiaofeng Li, Baocui Liu, Lijun Zhang and Dong Li*

Department of General Surgery, Daqing Oilfield General Hospital, Daqing City, Heilongjiang Province, 163000, P.R. China

These authors contributed equally to this work.

*E-mail: dongli_daqing@foxmail.com

doi: 10.20964/2017.11.36

Received: 31 July 2017 / Accepted: 5 September 2017 / Published: 12 October 2017

This study used a glassy carbon electrode (GCE) modified by gold nanoparticles (AuNPs) and stacked graphene nanofibres (SGNF) to prepare a facile electrochemical sensor for the detection of capecitabine, an anti-cancer drug used in breast cancer treatment. Differential pulse voltammetry (DPV) measurements were performed to investigate the electrochemical reduction of capecitabine using the AuNPs/SGNF-modified GCE. Our proposed sensor showed exceptional electrochemical activity to the capecitabine reduction with a linear range of 0.05 μM to 80.00 μM and a limit of detection (LOD) of 0.017 μM (S/N=3). Due to the distinct analysis behaviour, our proposed sensor shows potential for the practical detection of capecitabine in serum specimens.

Keywords: Capecitabine; Gold nanoparticles; Stacked graphene nanofibres; Electrochemical determination; Breast cancer

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).