Short Communication

Synthesized N1, N2-bis (furan-2-ylmethylene)Benzene-1, 2-diamine as a Corrosion Inhibitor for 20# Carbon Steel in 1 M Hydrochloric Acid

Zuoan Xiao¹², Huawei Wu¹, Guijie Liang³, Dan Zhan²*¹

¹ Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Xiangyang 441053, P. R. China
² Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, 441053, P. R. China
³ Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang, 441053, P. R. China
*E-mail: dan_zhan@126.com

doi: 10.20964/2017.11.47

Received: 19 July 2017 / Accepted: 5 September 2017 / Published: 12 October 2017

N1, N2-Bis (furan-2-ylmethylene) benzene-1,2-diamine (SB) was synthesized and investigated as a 20# carbon steel inhibiter in 1 M hydrochloric acid. Electrochemical and weight loss (WL) measurements were employed for evaluating the inhibition properties of SB. It was shown that SB acted as a mix-type corrosion inhibitor during the process, and the charge transfer resistance increased, while the double layer capacitance decreased with the increasing SB concentration. The results implied that the inhibiting effect of SB was attributed to the covering layer formed on the steel surface that replaced the water molecule. The thermodynamic adsorption parameters obtained from the WL measurements demonstrated that the adsorption process is exothermic and spontaneous, and the adsorption of SB obeys a Langmuir adsorption isotherm. The calculated values of ΔG²ads revealed that the adsorption mechanism of SB on the steel surface is a combination of physical and chemical processes.

Keywords: furfural; o-diaminobenzene; corrosion inhibitor; adsorption

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).