Synthesis and Characterization of Silver-Modified Micro-Diamond as an Electrocatalyst for Oxygen Evolution and Reduction Reactions in Alkaline Medium

Hao Huang1, Xilong Ma1,2, Yuanyuan Liu1, Jie Hu1,*, Zhefeng Xu2, Kazuhiro Matsugi2

1 State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
2 Department of Mechanical Materials Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
*E-mail: hujie@ysu.edu.cn

doi: 10.20964/2017.12.31

Received: 10 September 2017 / Accepted: 25 October 2017 / Published: 12 November 2017

Silver-modified micro-diamond composites are synthesized through the chemical reduction of silver nitrate and characterized via X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, and Raman spectroscopy. SEM and TEM images show that silver nanoparticles 10–30 nm in size are uniformly deposited on the surface of the micro-diamond. Electrochemical properties are investigated through cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. Results show that 10 wt% Ag/Dia (silver content is 10% of the diamond) exhibits better bifunctional performance than the commercial Pt/C (20 wt% Pt on carbon) electrocatalyst under the same testing conditions. Compared with pristine micro-diamond and nanodiamond, 10 wt% Ag/Dia demonstrates lower onset potential and higher current density during oxygen reduction reaction and oxygen evolution reaction. The electron transfer number of 10 wt% Ag/Dia is approximately 3.987 at −0.08 V, which indicates that the reaction is almost dominated by an efficient 4e$^-$ process. The satisfactory performances of the composites provide a novel potential application for electrochemistry.

Keywords: silver; micro diamond; oxygen reduction reaction; oxygen evolution reaction; electrocatalyst.

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).