Electrodeposited Silver-Gold Alloy as A Sensor for Paracetamol Determination

Ting Huang

Department of Pharmacy, Sichuan Provincial Corps Hospital CAPF, Leshan City, Sichuan Province, 614000, P.R. China
E-mail: tinghuang_186@sina.com

doi: 10.20964/2017.12.16

Received: 10 September 2017 / Accepted: 18 October 2017 / Published: 12 November 2017

In the present work, a composite Ag NPs/Au NPs bimetallic alloy was prepared via a one-step electrodeposition strategy. XPS and cyclic voltammogram (CV) measurements were carried out for the characterization of this composite. Paracetamol was successfully electrochemically detected using fabricated Au-Ag bimetallic alloy-modified ITO. Considering the excellent electronic features of these two metallic nanoparticle materials, the electrochemical response of paracetamol was found substantially enhanced by the Au-Ag bimetallic alloy, as shown in the CV experiment results. Optimization of the corresponding parameters was also carried out. It was found that paracetamol showed amperometric oxidation currents linearly related to the concentrations (0.01 - 1 mM), and the limit of detection (LOD) was obtained as 2.4 μM based on a sound to noise ratio of 3. In addition, our developed sensor proved highly reproducible and stable, and it displayed remarkable anti-interference properties; thus, it has the potential for applications in the detection of paracetamol in tablets and spiked human urine specimens.

Keywords: Paracetamol; Bimetallic alloy; Electrodeposition; Electrochemical determination; Tablet

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).