Short Communication

Preparation of High-Crystallinity and Large-Grain Br-doped Methylammonium Lead Iodide Thin Films at the Temperature Range of 100~140°C

Guannan Xiao, Chengwu Shi*, Nannan Li, Long Li, Zhangpeng Shao

School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P. R. China
*E-mail: shicw506@foxmail.com, shicw506@hfut.edu.cn
doi: 10.20964/2017.12.71

Received: 16 August 2017 / Accepted: 29 September 2017 / Published: 12 November 2017

Br-doped methylammonium lead iodide (CH$_3$NH$_3$PbI$_{3-x}$Br$_x$) thin films with high crystallinity and large grain sizes were successfully obtained by converting a PbI$_2$·N-methyl-2-pyrrolidone (NMP) complex thin film using a conversion temperature and conversion time of 140 °C and 10 min, respectively. The influence of the conversion temperature on the crystal phase, morphology, optical absorption and chemical composition of the CH$_3$NH$_3$PbI$_{3-x}$Br$_x$ thin films was systematically investigated, and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The crystallinity of the CH$_3$NH$_3$PbI$_{3-x}$Br$_x$ thin films was enhanced, and their grain size gradually increased, with an increase in the conversion temperature from 100 °C to 120 °C to 140 °C. The planar perovskite solar cells based on films converted at 140 °C showed the best photoelectric conversion efficiency (PCE) of 13.56 %, with an open-circuit voltage (V_{oc}) of 1.01 V, a short-circuit photocurrent density (J_{sc}) of 18.90 mA·cm$^{-2}$, a fill factor (FF) of 0.71, and an average PCE of 12.46±1.10 %, with V_{oc} of 0.99 ± 0.03 V, J_{sc} of 18.31±1.16 mA·cm$^{-2}$ and FF of 0.69 ± 0.04, all measured at a relative humidity of 50-54 % under illumination by simulated AM 1.5 sunlight (100 mA·cm$^{-2}$).

Keywords: Conversion temperature; Conversion time; PbI$_2$·NMP; CH$_3$NH$_3$PbI$_{3-x}$Br$_x$; Planar perovskite solar cell

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).