Combined Determination of Carbohydrate Antigen 199 and SirT1 Based on an Electrochemiluminescence Immunosensor

Wei Shao¹, Xiuli Sui² and Guowei Wang³,*

¹ Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, 256603, P.R. China
² Clinical laboratory, WenDeng Osteopathy Hospital, WeiHai City, Shandong Province, 250012, P.R. China
³ Department of Neurosurgery, The First Hospital of Yulin, Yulin City, Shaanxi Province, 719000, P.R. China
*E-mail: weishaoneuro@yeah.net

Received: 18 August 2017 / Accepted: 13 October 2017 / Published: 12 November 2017

In this work, a multi-functionalized graphene oxide (GO) material, where N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and either a CA199 antibody or a SirT1 antibody were chemically bound to the surface of magnetic GO (nanoFe₃O₄@GO), was fabricated as a one-step electrochemiluminescence (ECL) immunosensor for the ultrasensitive determination of the carbohydrate antigen 199 (CA199) and human sirtuin1 (SirT1). The determination was carried out using a sandwich system, with the quantification of CA199 and SirT1 achieved through potential cycling from +0.6 to −1.4 V. This strategy was successfully used for the determination of the two tumour markers over the range of 0.3 fg/mL - 22 pg/mL, and the limit of detection (LOD) was calculated as 0.15 fg/mL.

Keywords: Combined determination; Carbohydrate antigen 199; Electrochemiluminescence method; Glioma diagnosis;

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).