Short Communication

A Novel Composite Anode Material of Si-SnO$_2$-graphene Prepared in Air for Lithium Ion Batteries

Chenxue Li1, Yuhong Chen2,*, Binjuan Wei1, Keqiang Ding1,*, Yan Zhang1, Xiaomi Shi1, Jinming Zhou1,*

1College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P.R. China
2Department of Chemical and Environmental Engineering, Hebei Chemical & Pharmaceutical Vocational Technology College, Shijiazhuang 050026.
*E-mail: dkeqiang@263.net, chyh76@163.com, zhoujm@iccas.ac.cn

doi: 10.20964/2017.12.30

Received: 19 September 2017 / Accepted: 21 October 2017 / Published: 12 November 2017

For the first time, a novel composite material, that contained Si, SnO$_2$ and graphene, was prepared by using an air condition calcination method employing commercial silicon wafer, SnCl$_4$ and graphene as the starting materials. In this work, four samples, i.e., Si (sample a), Si+SnCl$_4$ (sample b), Si+SnCl$_4$+graphene (sample c) and Si+SnCl$_4$+lignin (sample d), were fabricated and systematically investigated. The physicochemical properties of the synthesized samples were characterized mainly by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results strongly indicated that elementary Si existed in all prepared samples and SnO$_2$ was contained in sample b, c and d. The electrochemical properties of the resultants samples were investigated basically by employing cyclic voltammometry (CV), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS), and the results revealed that the discharge capacities of sample c and d were respectively estimated to be about 350 and 272 mAh g$^{-1}$ after 20 cycles at 100 mA g$^{-1}$. It should be emphasized that no harsh preparation conditions were employed in this work. That is to say, this newly created novel kind of composite anode materials, i.e., sample c, can be large-scale produced easily, being very helpful to the development of commercial production of lithium ions batteries (LIBs) anode materials.

Keywords: anode material; Si; SnO$_2$; graphene; Li ion battery

FULL TEXT