Short Communication

Investigation of Hydrogen Release Rate from Electrodes of Nickel-Cadmium Batteries at Their Thermal Decomposition

Nikolay E. Galushkin*, Nataliya N. Yazvinskaya, Dmitriy N. Galushkin, Inna A. Galushkina

Don State Technical University, Laboratory of electrochemical and hydrogen energy, 147 Shevchenko Street, Town of Shakhty, Rostov Region, Russia, 346500.

*E-mail: galushkinne@mail.ru

doi: 1020964/2018.01.37

Received: 3 August 2017 / Accepted: 31 October 2017 / Online Published: 1 December 2017

In this paper, kinetics is examined of a hydrogen release at thermal decomposition of oxide–nickel and cadmium electrodes of nickel-cadmium batteries KSX-25 with operating life 6 years. The examination was conducted at fixed values of temperature: 480, 600, 800°C (for cadmium electrodes) and 670, 840, 880°C (for oxide–nickel ones). It was proved by experiments that in electrodes of nickel-cadmium batteries in a course of their long-lasting operation, a great amount of hydrogen is accumulated. The rate of the hydrogen release and the released hydrogen amount grow with decomposition temperature increase. Although at temperatures higher than 900°C, the released hydrogen volume does not grow any longer. This fact shows that hydrogen atoms are contained inside of ceramic-metal matrix of electrodes in a potential hole, i.e. in their bound state. Energy values were found of hydrogen atoms activation for diffusion process in ceramic-metal matrices of oxide–nickel and cadmium electrodes; they are equal to 0.37 eV and 0.34 eV respectively.

Keywords: battery, nickel-cadmium, hydrogen accumulation, thermal runaway.

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).