MnO$_2$/CdS/N-doped Graphite Nanocomposite for High-Performance Supercapacitors

Liang Chen, Yinze Zuo, Yu Zhang and Yanmin Gao

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Jiangsu, Zhenjiang 212003, China

*E-mail: gymjust@126.com

doi: 10.20964/2018.01.59

Received: 6 October 2017 / Accepted: 12 November 2017 / Published: 16 December 2017

To improve the electrochemical performance of supercapacitors, the reaction mechanism and structural design should be examined simultaneously. In this work, an N-doped graphite (NG) layer was self-assembled directly on a Ni matrix and acted as an active interlayer between the current collector and the active material. For the first time, ultrafine CdS nanoparticles were synthesized on an NG layer directly as the electrode active material. Subsequently, MnO$_2$ nanowires penetrated the gaps between the CdS particles and tightly anchored the CdS nanoparticles on the surface of the NG. The presence of the MnO$_2$ nanowires was demonstrated to prompt charge transfer into the interior CdS and facilitate the redox reaction at the MnO$_2$-CdS@NG electrode. In addition, due to the synergy of the N-doped interlayer and the novel reinforced structure, the chemical activity and cycling stability were improved. From the electrochemical measurements, the specific capacitance of the MnO$_2$-CdS@NG electrode was 1497 F g$^{-1}$ at the current density of 2 A g$^{-1}$. In addition, the MnO$_2$-CdS@NG//rGO asymmetric supercapacitor exhibited a superior energy density (33.8 W h kg$^{-1}$ at a power density of 776 W kg$^{-1}$) and a great cycling stability (87% at a current density of 10 A g$^{-1}$ for 5000 cycles).

Keywords: supercapacitors, solvothermal method, CdS nanoparticles, MnO$_2$ nanowires, N-doped graphite

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).