Micro/nano-structured carbon (MNC) was synthetized nanocasting method and anhydrous pyrolysis process at 1000 °C using refined sugar as carbon precursor and SBA-15 as structure directing agent. SBA-15 was prepared through sol gel using the copolymer triblock non ionic pluronic P-123 as surfactant and tetraethyl orthosilicate as Si precursor. The prepared materials were characterized by means of N₂ physisorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM) and cyclic voltammetry (CV). The applied characterization techniques revealed that MNC has a mesoporous and turbostratic structure with rope like morphology composed by a set of carbon nanofibers and carbon nanopipes wrapped by thin graphene layers with large specific surface area (1292 m²/g) and large pore volume (1.2 cc/g), so MNC is a promising material for applications in adsorption, energy storage and solar cells, supercapacitor electrodes and electrocatalytic supports.

Keywords: SBA-15, nanocasting, carbon nanopipes, carbon nanofibers, turbostratic carbon

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).