Short Communication

One-Step Synthesis of Co@C Composite as High-Performance Anode Material for Lithium-ion Batteries

Ming-Jun Xiao¹, Fu-Liang Zhu¹,³, Gong-Rui Wang¹, Chao-Yu Duan¹, Yan-Shuang Meng¹,³,* and Yue Zhang²,*

¹ School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
² Department of Mechanical and Industrial Engineering, Texas A&M University-Kingsville, Kingsville, Texas, 78363, USA
³ State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China

E-mail: mengyanshuang@163.com, yue.zhang@tamuk.edu

doi: 10.20964/2018.01.60

Received: 16 October 2017 / Accepted: 24 November 2017 / Published: 16 December 2017

A carbon-coated cobalt (Co@C) composite was synthesized by a one-step method using ionic liquid as carbon source and reducing agent. The Co@C composite exhibited a core-shell structure, in which the cobalt nanoparticles uniformly embedded in the carbon matrix. When used as the anode material for lithium ion batteries, the cobalt nanoparticles enhanced the kinetics of Li+ and electronic transport during the charge/discharge process. The Co@C composite material delivered a reversible capacity of 657.3 mAh g⁻¹ after 60 cycles at a current density of 0.1C and exhibits improved rate performance when compared with pure carbon.

Keywords: Co@C composite; Lithium ion batteries; Ionic liquid

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).