Short Communication

Electrodeposition of a YSZ–Yttria Stabilized Zirconia Composite Coating on a Titanium Bone Implant

Xin Yin¹, Cunfu Liang²* and Fengxiao Ge¹

¹ Department of Arthrosis surgery, Linyi People's Hospital, Linyi City, Shandong Province, 276000, P.R. China
² Department of General Medicine, Linyi People's Hospital, Linyi City, Shandong Province, 276000, P.R. China
*E-mail: liangcunfu_vip@sina.com

doi: 10.20964/2018.01.77

Received: 17 September 2017 / Accepted: 19 November 2017 / Published: 16 December 2017

For load-bearing or bone-contacting applications, including renovation of congenital skeletal abnormalities, joint and tooth replacement, and fracture healing, metallic implants have gained extensive use and acceptance. Cathodic electrodeposition from zinc sulfate-based electrolytes containing gelatin was carried out to prepare composite coatings of zinc and nano-sized yttria-stabilized zirconia (YSZ) particles. Through immersion in simulated body fluid and cell proliferation performed separately several times, the apatite precipitation of the YSZ-coated Ti was studied to measure its biocompatibility and bioactivity. It can be seen that the developed YSZ-Ti showed decreased inflammatory response compared to bare Ti implants due to its excellent tissue attachment features, apatite formation capacity, and biocompatibility.

Keywords: Electrodeposition; Yttria stabilized zirconia; Coating; Adhesion strength; Bone implant

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).