Preparation of Nitrogen-Doped Porous Carbon from Melamine-Formaldehyde Resins Crosslinked by Phytic Acid

Wei Xiong1,2, Ji Hoon Kang1, and Yongju Jung1,*

1 Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea
2 School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Road, Wuhan 430073, P. R. China
*E-mail: yjung@koreatech.ac.kr
doi: 10.20964/2018.01.45

Received: 17 September 2017 / Accepted: 11 November 2017 / Published: 16 December 2017

A new approach for the fabrication of nitrogen-doped hierarchical porous carbon (NHPC) is presented on the basis of the carbonization of melamine-formaldehyde resins crosslinked by phytic acid. The specific surface area and micropore volume of NHPC greatly increased with an increase in carbonization temperature. The NHPC sample (NHPC-850) synthesized at 850 °C showed a high surface area (2732 m²/g) and a large pore volume (1.46 cm³/g) with hierarchical porous structures of macro-, meso- and micropores. It is thought that phytic acid contributed to increasing the space between carbon frameworks during carbonization. This increase allowed KOH to be more uniformly distributed in the carbon framework, leading to a more effective activation process. NHPC-850 exhibited excellent electrochemical performance in an aqueous 6.0 M KOH solution, including a high specific capacitance (271 F/g at 1.0 A/g), an excellent rate property of 70% at 10.0 A/g, and ~100% retention after 500 cycles.

Keywords: Nitrogen-doped hierarchical porous carbon, melamine-formaldehyde resin, supercapacitor, phytic acid, crosslinker

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).