Electrochemical Properties of SPEEK/Epoxy Semi-interpenetrating Network Composites as Proton Exchange Membrane

Zhengping Zhao¹,², Chenyu Pan², Lixin Xue¹, Guojun Jiang¹, Mingqiang Zhong²*, and Benhua Fei³

¹Zhijiang College, Zhejiang University of Technology, Hangzhou 310014, China
²College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
³International Center for Bamboo and Rattan, Beijing 100102, China

*E-mail: mq_zhong@163.com

doi: 10.20964/2018.01.48

Received: 23 September 2017 / Accepted: 6 November 2017 / Published: 16 December 2017

The DS 68% SPEEK composite membranes with were prepared by post-sulfonation. Using diethylenetriamine as the epoxy cross-linking agent, which is uniformly distributed in SPEEK, to form SPEEK/epoxy semi-interpenetrating network structure and explore the impact of semi-interpenetrating network on the performances as proton exchange membrane. The contents of epoxy resin are 10 wt.%, 15 wt.% and 20 wt.%, respectively. The thermal properties of the proton exchange membranes are increases with the increase of crosslinking structure of epoxy resin. But the conductivity proton performances are slightly declined with the increase of semi-interpenetrating network. Crosslinking increased the density of proton exchange membrane, improved the anti-water swelling property and avoided the proton conductivity rising slowly at high temperature. With the increases of epoxy resin, the methanol permeability coefficient decreases.

Keywords: Electrochemical properties, SPEEK, epoxy resin, semi-interpenetrating network

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).