Plastic Sensor for Losartan Potassium Determination based on Ferroin and Ionic Liquid

Mohsen M. Zareh 1, *, Khlid ElGendy 1, Anwar A. Wassel 2, Ahmed Fathy 1 and Yasser M. Abd Alkarem 1

1 Department of Chemistry, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt.
2 NODCAR – National Organization for Drug Control and Research, Giza, Egypt.
*E-mail: mohsenzareh2@gmail.com, mmzareh@zu.edu.eg

doi: 10.20964/2018.02.59

Received: 2 October 2017 / Accepted: 7 December 2017 / Published: 28 December 2017

In this study, a potentiometric sensor based on a plastic-membrane was introduced for the determination of losartan potassium in pharmaceutical formulations. The sensing element contained an ion-pair, which was synthesized by the interaction of losartan potassium and 1,10 phenanthroline monohydrate. The best membrane sensor response was obtained by a membrane composed of 30.6% PVC, 61.4% o-NPOE, 7.5% ion-pair and 0.5% ionic liquid. The proposed method was successfully applied for the determination of losartan potassium in some formulations. The proposed sensor showed a linear dynamic range between 5.0×10^{-5} and 1.0×10^{-2} M of losartan potassium with a Nernstian slope of 62.0 ±1.0 mV per decade and a lower detection limit of 3.5×10^{-5} M. It displayed a fast response time of about 10 s, and a lifetime of about three weeks without any significant loss in its performance.

Keywords: Losartan potassium, potentiometric sensor, PVC membrane electrode, ion-pair.