Short Communication

Preparation of Phosphate Ion-Selective Membrane Based on Silver Salts Mixed with PTFE or Carbon Nanotubes

M. Bralić¹*, A. Prkić², J. Radić¹, I. Pleslić¹

¹ Department of Environmental Chemistry, Faculty of Chemistry and Technology, R. Boškovića 35, 21000 Split, Croatia
² Department of Analytical Chemistry, Faculty of Chemistry and Technology, R. Boškovića 35, 21000 Split, Croatia
*E-mail: bralic@ktf-split.hr

doi: 10.20964/2018.02.49

Received: 14 November 2017 / Accepted: 13 December 2017 / Published: 28 December 2017

A sensitive phosphate sensor has been prepared by constructing a solid membrane disk consisting of variable mixtures of silver phosphate, silver sulfide, and PTFE (Type 1 membrane) or silver phosphate, silver sulfide and nanotube (Type 2 membrane). The ternary membranes exhibit greater selectivity over the wide range of concentration. The membrane with the composition of 50.00% PTFE; 41.66% \(\text{Ag}_3\text{PO}_4 \) and 8.33% \(\text{Ag}_2\text{S} \) was selected as our preferred membrane. The membranes exhibited linear potential response in the concentration range of \(1 \times 10^{-1} \) to \(1 \times 10^{-5} \) M. Their detection limit is about \(5 \times 10^{-6} \) M. The membranes have a long lifetime and can be stored in air when they are not in use. The best performance for nanocomposite sensor was obtained with membrane of the following composition: 78.00% \(\text{Ag}_3\text{PO}_4 \); 20.00% \(\text{Ag}_2\text{S} \), and 2.00% carbon nanoparticles. The membrane had a slope of 32.6 mV toward \(\text{HPO}_4^{2-} \) ions in the range between \(1 \times 10^{-1} \) and \(1 \times 10^{-5} \) M with a detection limit of \(5.45 \times 10^{-6} \) M. The proposed sensors were found to be applicable over a pH range between 3 and 7.

Keywords: ion selective electrode, monohydrogen phosphate, potentiometry, carbon nanotubes, PTFE.

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).