Experimental and Theoretical Calculations on Corrosion Inhibition of Bronze in 0.5 M HCl by Some Schiff Bases

Zhe Zhang 1, Le Ruan 1,*, Weipeng Zhang 1, Yuzeng Lyu 2, Wei Shang 1, Yuqing Wen 1, Xiuying Li 1, Ling Wu 3, Yanni Jiao 4

1 Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
2 Engineering Research Center of Exploration for hidden Nonferrous and Precious Metal Ore Deposits, Ministry of Education, 541004, PR China
3 School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
4 Shandong Center for Disease Control and Prevention, Jinan 250014, PR China
*E-mail: ruanle@glut.edu.cn
doi: 10.20964/2018.02.61

Received: 10 January 2017 / Accepted: 10 November 2017 / Published: 28 December 2017

The triazol-3-ylamine and three different kinds of Schiff base compounds are self-assembled on bronze surface. Electrochemical impedance spectroscopy and potentiodynamic polarization measurements show that the triazol-3-ylamine and Schiff base self-assembled films can protect bronze from corrosion in 0.5 M HCl solution. The corrosion efficiency increases with the self-assembly time increasing and reaches a stable value after 8 h. The highest corrosion efficiency of the bronze electrode modified with self-assembled films reaches 95.81% after immersing in 0.005 M 2,4-Dibromo-6-[(4H-[1,2,4]Triazol-3-ylimino)-methyl]-phenol Schiff base solution for 10 h. X-ray photoelectron spectroscopy and scanning electrochemical microscope are used to characterize the inhibitive ability of the self-assembled films. Quantum chemical calculations and dynamic simulations indicate that the triazol-3-ylamine and Schiff bases molecules can absorb on the copper surface via chemisorption. The adsorption energy increases with the number of aromatic rings.

Keywords: Schiff base; bronze; inhibition; molecular simulation; XPS.

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).