Short Communication

Corrosion Inhibition of Titanium by *Paecilomyces variotii* and *Aspergillus niger* in an Aqueous Environment

Ziheng Bai, Kui Xiao*, Lihong Chen, Dawei Zhang, Chaofang Dong and Junsheng Wu

Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, P. R. China
Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 10083, P. R. China
*E-mail: xiaokui@ustb.edu.cn

doi: 10.20964/2018.02.70

Received: 15 October 2017 / Accepted: 13 December 2017 / Published: 28 December 2017

Microbial activity can influence the corrosion behavior of metals through an inhibiting effect or an accelerating effect. Currently, research regarding microbiologically-influenced corrosion mainly focuses on bacteria such as sulfate-reducing bacteria and iron-oxidizing bacteria, but fungus can also influence corrosion processes of metals and materials. In this study, the corrosion behaviors of TA1 titanium were investigated through immersion in two fungi spore suspensions, containing *Paecilomyces variotii* and *Aspergillus niger*, which supplied an aqueous environment for up to 28 days. The reproduction of microorganisms and the formation of biofilms were observed using scanning electron microscopy. The effect of fungi upon the metal was measured with electrochemical methods. The results showed that the fungi had an inhibiting effect on the corrosion of titanium in an aqueous environment.

Keywords: Titanium, Fungi, Corrosion, EIS, MIC

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).