Room-temperature Facile Synthesis of Co$_3$O$_4$ Nanoflakes as Anode Material for Li-ion Rechargeable Batteries

Venugopal Nulu, Arunakumari Nulu and Keun Yong Sohn*

Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University
197 Inje-ro, Gimhae, Gyeongnam-do 50834, Republic of Korea
*E-mail: ksohn@inje.ac.kr; ksohnlab@gmail.com
doi: 10.20964/2018.02.73

Received: 18 October 2017 / Accepted: 13 December 2017 / Published: 28 December 2017

There have been numerous reports on the synthesis of Co$_3$O$_4$ nanoparticles with a wide variety of nanostructures using different chemical methods. Many such approaches involved the synthesis of the metal hydroxide followed by thermal annealing to obtain the oxide. Recently, several low-temperature chemical methods have been developed. However, these procedures typically involve tedious experimental parameters. In this study, we developed a simple, strategic room-temperature approach to obtain hierarchical arrays of Co$_3$O$_4$ nanoflakes. The properties of the obtained material (phase, morphology, and structure) were analyzed comprehensively by techniques. The Co$_3$O$_4$ nanoflakes show superior electrode performance as an anode material in Li-ion rechargeable batteries, in terms of cycle life and rate capability, that is suitable for next-generation energy storage applications.

Keywords: room-temperature synthesis; Co$_3$O$_4$ nanoflakes; lithium-ion rechargeable battery; specific capacity

FULL TEXT

© 2018 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).