Hydrothermal Synthesis and Electrochemical Properties of MoS₂/C Nanocomposite

Haishen Song^{1,2,3,*}, Anping Tang¹, Guorong Xu², Lihua Liu³, Yijin Pan², and Mengjia Yin²

 ¹ Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education
² School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
³ Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR

*E-mail: <u>Song_shs@126.com</u>

doi: 10.20964/2018.07.54

Received: 16 March 2018 / Accepted: 12 April 2018 / Published: 5 June 2018

A molybdenum disulfide/carbon (MoS_2/C) nanocomposite was synthesized by a simple hydrothermal method using glucose as a carbon source followed by carbonization. The sample was systematically investigated by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Electrochemical performances were evaluated in two-electrode cells versus metallic sodium. The synthesized MoS_2/C composite exhibits an initial capacity of 475.1 mAh g⁻¹ at a current density of 100 mA g⁻¹, and a capacity retention of 71% is obtained after 100 cycles at a current density of 250 mA g⁻¹. The material shows enhanced electrochemical performances compared with pristine MoS_2 due to incorporation of the conductive carbon, which suppressed significant volumetric change in MoS_2 during the charge/discharge process and increased the electrical conductivity of MoS_2 .

Keywords: MoS₂/C composite; hydrothermal synthesis; anode material; sodium-ion battery

FULL TEXT

© 2018 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).