Enhanced photocatalytic performance of BiVO$_4$ for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate

Shoufeng Tang1, Zetao Wang1, Deling Yuan*,1, Yating Zhang1, Jinbang Qi1, Yandi Rao1, Guang Lu4, Bing Li5, Kai Wang3, Kai Yin2

1 Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
2 Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
3 School of Electrical Engineering, Qingdao University, Qingdao, 266000, P. R. China
4 College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, P. R. China
5 Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, Private Bag, 92019, Auckland, New Zealand

*E-mail: yuandeling83@126.com
doi: 10.20964/2020.03.09

Received: 5 November 2019 / Accepted: 17 December 2019 / Published: 10 February 2020

The enhancement of BiVO$_4$ photocatalytic degradation of methylene blue (MB) through peroxymonosulfate (PMS) introduction was studied under LED light irradiation. The BiVO$_4$ catalyst was prepared by the hydrothermal method, and its physicochemical properties were characterized through various surface means. The influencing factors on the MB decolorization, such as the PMS concentration, BiVO$_4$ amount, initial solution pH value, and catalyst stability were determined. The results presented that the photocatalytic performance of BiVO$_4$ for MB removal was effectively improved after adding the PMS in the photocatalysis system. Increasing BiVO$_4$ and PMS dosages promoted the MB elimination, and the synergy process showed satisfactory MB decolorization effect from pH 4 to 10. Besides, the coupling system exhibited a good stability after the four recycles. Moreover, the reactive species were identified by radicals scavenging experiments, and the results displayed that the sulfate and hydroxyl radicals were in charge of the MB decomposition during this collaborative process.

Keywords: BiVO$_4$; Photocatalysis; LED visible light; Peroxymonosulfate; Methylene blue degradation