Short Communication

Electrochemical Detection of Tadalafil at Glassy Carbon Electrodes Modified with Ruthenium(II) Complex

Eyad S. M. Abu-Nameh^{1,2,*}, Naela Al Absi¹, Mohammad A. Al-Wahish³, Hamdallah A. Hodali³, and Mohammad F. Khanfar⁴

¹ Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan. ² Department of Pharmacy, Faculty of Pharmacy, Amman Arab University, Jordan.

³ Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.

⁴ Pharmaceutical-Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, P.O.Box 35247 Amman 11180 Jordan.

*E-mail: <u>abunameh@bau.edu.jo</u>

doi: 10.20964/2020.07.70

Received: 19 February 2020/ Accepted: 9 April 2020 / Published: 10 June 2020

Ruthenium complexes are well known for their electrochemical activity, which could be attributed to the presence of stable ruthenium complexes with divalent ruthenium center, Ru^{2+} . In this work, dichlorobis[8-(diphenylphosphino)quinoline]ruthenium(II) was employed for the detection of tadalafil, a medication for erectile dysfunction, as pure standard or as an ingredient in a pharmaceutical dosage form. A linear range between 30.0 and 80.0 μ M was reported with a correlation coefficient equals to 0.9661. The corresponding limit of detection (LOD) and limit of quantitation (LOQ) reported values obtained were 3.85 μ M and 11.7 μ M, respectively.

Keyword: Tadalafil, Ruthenium (II) Complexes, Diphenylphosphino quinoline, Oxidation

FULL TEXT

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).