Synthesis of MnMoO$_4$ Nanorods by a Simple Co-Precipitation Method in Presence of Polyethylene Glycol for Pseudocapacitor Application

Sivakumar Musuvadhi Babulal1, Krishnan Venkatesh2, Tse-Wei Chen3, Shen-Ming Chen1,*, Alagumalai Krishnapandi4, Syang-Peng Rwei4,5, and Sayee Kannan Ramaraj2,*

1Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan R.O.C.
2Thiagarajar College (Autonomous), Madurai, Tamil Nadu, India.
3Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
4Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taiwan
5Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taiwan

E-mail: smchen78@ms15.hinet.net; sayeekannanramaraj@gmail.com

doi: 10.20964/2020.07.90

Received: 3 April 2020 / Accepted: 27 May 2020 / Published: 10 June 2020

Recent attention has focused on the synthesis and application of the binary oxide-based nanomaterial, which can have superior electrochemical performance than the single oxide materials. The metal molybdate has drawn significant attention due to its multiple oxidation states of molybdenum ion and its large electrical activity has been extensively studied in energy storage application. Here, we synthesized MnMoO$_4$ nanorods through the co-precipitation method with the aid of the polyethylene glycol (PEG) surfactant and its electrochemical properties are investigated toward the supercapacitor application. The crystalline structure and surface morphology of PEG-MnMoO$_4$ are evaluated by X-ray diffraction, Raman, field emission scanning electron microscope and elemental mapping, reveals the as-prepared PEG-MnMoO$_4$ exhibits uniform nanorods or forefinger-like morphology with monoclinic phase crystal structure. The as-fabricated PEG-MnMoO$_4$ nanorods electrode showed very high discharge capacity 424 F g$^{-1}$ at a current density of 1 A g$^{-1}$ with a large potential window 1.8 V vs. Ag/AgCl in 1 M Na$_2$SO$_4$. Hence, the surfactant-assisted synthesis of MnMoO$_4$ nanorods can be the best energy storage material that can deliver higher specific discharge capacity when it’s combined with suitable supporting matrices.

Keywords: Co-precipitation method; Manganese molybdate; Pseudo capacitive materials; Binary transition metal oxide.