International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

In situ fabrication of Cu-bipy-BTC Metal-organic Framework Electrode for Catechol Detection

Zhipeng LI¹, Liwei Ren^{2,*} and Diannan Lu^{1,*}

*E-mail: <u>ludiannan@tsinghua.edu.cn.com</u> (D.L.); <u>renliwei@ctgu.edu.cn</u> (L.R.)

doi: 10.20964/2020.08.52

Received: 13 May 2020 / Accepted: 27 May 2020 / Published: 10 July 2020

In this work, the metal organic frameworks (MOFs) Cu-bipy-BTC ([Cu₂(OH)(2,2'-bipy)₂(BTC)₃ $2H_2O]_n$) were *in situ* synthesized on the surface of a gold electrode directly to form a hybrid material of a Cu(OH)₂ nanosheet and Cu-bipy-BTC nanoparticle. The structure of this hybrid material on the electrode surface was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectrocopy. It is shown that the newly *in situ* synthesized Cu-bipy-BTC MOF can serve as active metal centers, and is embedded in different hydrophobic environments formed by Cu(OH)₂ nanosheets. This unique structure is very similar to that of an active site of laccase, giving better catalytic activity. This MOF-based electrode enables the catalytic oxidation of catechol at +0.4 V (versus Ag/AgCl). The amperometric responses are linear with concentrations of catechol ranging from 10 to 250 μ M and 250 to 1000 μ M with sensitivities of 1.6224 and 0.2591 μ A·cm⁻²· μ M⁻¹, respectively. Compared with other catechol electrochemical sensors, this MOF-based electrode has advantages of higher sensitivity and easy manufacturability, facilitating its potential application in the detection of catechol.

Keywords: hybrid structure, asymmetry Cu-bipy-BTC MOF, Cu(OH)₂ nanosheet, *in situ* fabrication, electro-catalysis, catechol detection

FULL TEXT

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

¹ Key Lab of Industrial Biocatalysis, Ministry of Education, China, Department of Chemical Engineering, Tsinghua University, Beijing, China

² College of Biological and Pharmaceutical Sciences, Three Gorges University, Yichang, Hubei Province, China